Mixed Hodge Structures and Singularities
1998 • 210 pages

This vital work is both an introduction to, and a survey of singularity theory, in particular, studying singularities by means of differential forms. Here, some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss-Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This is an excellent resource for all researchers in singularity theory, algebraic or differential geometry.

Tags


Become a Librarian

Series

Featured Series

33 primary books

#132 in Cambridge Tracts in Mathematics

Cambridge Tracts in Mathematics is a 33-book series with 33 released primary works first released in 1990 with contributions by Peter Sarnak, Michael Aschbacher, and Yoshiyuki Kitaoka.

#99
Some Applications of Modular Forms
#104
Sporadic Groups
#106
Arithmetic of Quadratic Forms
#107
Duality and Perturbation Methods in Critical Point Theory
#112
Schur Algebras and Representation Theory
#132
Mixed Hodge Structures and Singularities
#134
Birational Geometry Algebraic Var
#139
Typical Dynamics of Volume Preserving Homeomorphisms
#147
Floer Homology Groups in Yang-Mills Theory
#150
Harmonic Maps, Conservation Laws and Moving Frames
#153
Abelian Varieties, Theta Functions and the Fourier Transform

Reviews

Popular Reviews

Reviews with the most likes.

There are no reviews for this book. Add yours and it'll show up right here!