Differential Forms in Algebraic Topology
1982 • 352 pages

This text, developed from a first-year graduate course in algebraic topology, is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas- de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes-and include some applications to homotopy theory. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, "Differential Forms in Algebraic Topology" should be suitable for self-study or for a one- semester course in topology.

Tags


Become a Librarian

Series

Featured Series

153 primary books

#82 in Graduate Texts in Mathematics

Graduate Texts in Mathematics is a 153-book series with 153 released primary works first released in 1899 with contributions by G. Takeuti, W M Zaring, and John C. Oxtoby.

#1
Introduction to Axiomatic Set Theory
#2
Measure and Category: A Survey of the Analogies between Topological and Measure Spaces
#4
A Course in Homological Algebra
#5
Category Theory
#7
A Course in Arithmetic
#9
Introduction to Lie Algebras and Representation Theory
#11
Functions of One Complex Variable
#13
Rings and Categories of Modules
#18
Measure theory
#19
A Hilbert Space Problem Book
#20
Fibre Bundles
#21
Linear Algebraic Groups

Reviews

Popular Reviews

Reviews with the most likes.

There are no reviews for this book. Add yours and it'll show up right here!


Top Lists

See all (1)

List

311 books

Math

Calculus
All of Statistics: A Concise Course in Statistical Inference
How to Prove It A Structured Approach
How to Solve it
Mathematics for 3D game programming and computer graphics
Street-Fighting Mathematics
Algebra