Mathematical Logic, 2nd Edition
1978 • 314 pages

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Tags


Become a Librarian

Series

Featured Series

153 primary books

#291 in Graduate Texts in Mathematics

Graduate Texts in Mathematics is a 153-book series with 153 released primary works first released in 1899 with contributions by G. Takeuti, W M Zaring, and John C. Oxtoby.

#1
Introduction to Axiomatic Set Theory
#2
Measure and Category: A Survey of the Analogies between Topological and Measure Spaces
#4
A Course in Homological Algebra
#5
Category Theory
#7
A Course in Arithmetic
#9
Introduction to Lie Algebras and Representation Theory
#11
Functions of One Complex Variable
#13
Rings and Categories of Modules
#18
Measure theory
#19
A Hilbert Space Problem Book
#20
Fibre Bundles
#21
Linear Algebraic Groups

Reviews

Popular Reviews

Reviews with the most likes.

There are no reviews for this book. Add yours and it'll show up right here!


Top Lists

See all (1)

List

311 books

Math

Calculus
All of Statistics: A Concise Course in Statistical Inference
How to Prove It A Structured Approach
How to Solve it
Mathematics for 3D game programming and computer graphics
Street-Fighting Mathematics
Algebra