Essentials of Integration Theory for Analysis

Essentials of Integration Theory for Analysis

2011 • 244 pages

‘A Concise Introduction to the Theory of Integration’ was once a best-selling Birkhäuser title which published 3 editions. This manuscript is a substantial revision of the material. Chapter one now includes a section about the rate of convergence of Riemann sums. The second chapter now covers both Lebesgue and Bernoulli measures, whose relation to one another is discussed. The third chapter now includes a proof of Lebesgue's differential theorem for all monotone functions. This is a beautiful topic which is not often covered. The treatment of surface measure and the divergence theorem in the fifth chapter has been improved. Loose ends from the discussion of the Euler-MacLauren in Chapter I are tied together in Chapter seven. Chapter eight has been expanded to include a proof of Carathéory's method for constructing measures; his result is applied to the construction of Hausdorff measures. The new material is complemented by the addition of several new problems based on that material.

Tags


Become a Librarian

Series

Featured Series

153 primary books

#262 in Graduate Texts in Mathematics

Graduate Texts in Mathematics is a 153-book series with 153 released primary works first released in 1899 with contributions by G. Takeuti, W M Zaring, and John C. Oxtoby.

#1
Introduction to Axiomatic Set Theory
#2
Measure and Category: A Survey of the Analogies between Topological and Measure Spaces
#4
A Course in Homological Algebra
#5
Category Theory
#7
A Course in Arithmetic
#9
Introduction to Lie Algebras and Representation Theory
#11
Functions of One Complex Variable
#13
Rings and Categories of Modules
#18
Measure theory
#19
A Hilbert Space Problem Book
#20
Fibre Bundles
#21
Linear Algebraic Groups

Reviews

Popular Reviews

Reviews with the most likes.

There are no reviews for this book. Add yours and it'll show up right here!